
             IJESR           Volume 2, Issue 12             ISSN: 2347-6532 
__________________________________________________________  

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories 
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A. 

International Journal of Engineering & Scientific Research 
http://www.ijmra.us 

 31 

December 
2014 

 

In Solving the Mass Spring System with 

Inhomogeneous Dirac Delta Function Using 

the Laplace Transform Method 

R. Tshelametse
*
 

C. Mabenga* 

 

Abstract 

The mass spring system is generally modelled by second order linear ordinary differential 

equations. The equations are usually analytically solved using elementary methods such as the 

method of undetermined coefficients, the method of the differential operator and the method of 

variation of parameters. These methods face stiff challenges when the inhomogeneous term is a 

discontinuous function such as the step or impulse function. In this paper we solve the mass 

spring system with an inhomogeneous Dirac delta function using the Laplace transform method. 

We conduct numerical experiments to illustrate nature of solutions obtained. The results obtained 

are consistent with the general theory of mass spring systems.  
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1 Introduction 

The general form of the ODE of the mass spring system is given by 

 with  

where  and  are positive constants known as the natural frequency [rads/sec] and the neper 

frequency [nepers/sec] of the system, respectively,  is the external force [N] applied to the 

system at  time  [sec] while  and  are the given initial conditions,Braun [1] and Pishgar et al 

[2]. The natural frequency represents the frequency of oscillations when no external force is 

applied to the system while the neper frequency determines the rate at which the system’s 

response is damped. Some authors refer to the neper frequency as the damping factor, but in this 

paper as in Gavin and Dolbow [3] and Pishgar et al [2]we take the damping factor denoted by  

to be given by 

 

The damping factor is a very important parameter when solving equation (1) as it determines the 

type of the solutions obtained.  

Solving equation (1) analytically using elementary methods such as the method of undetermined 

coefficients, the differential operator method and the method of variation of parameters can 

become tedious and difficult when is a discontinuous function, Braun [1] and Abas [4]. 

Examples of discontinuous functions include step functions such as the Heaviside or the unit step 

functionand impulse functionssuch as the Dirac delta or unit impulse function. The Dirac delta 

function usually denoted by is also known as the unit impulse function represents a force 

that acts at a single instant of time and is zero elsewhere. It is defined as for  with 

 In other words represents a force with a total impulse of  N acting at the 

instant time , Hunt [5]. In general the Dirac delta function can be expressed as

 where  N is the total impulse at the instant time  for  any constant. The 

Dirac delta function applied to the  mass spring system is like a sharp blow acting on the system. 

The Laplace transform method is very much suitable for solving differential equations of the 

form (1) especially when  is a discontinuous function, Braun [1], Logan [6] and Hunt  

[4]. The method not only solves the differential equation, but also simplifies the problem. First 

the differential equation is transformed into an algebraic equation that is easy to solve. The 

solution of the differential equation is then obtained by taking the inverse Laplace transform of 

the obtained algebraic solution, Braun [1].  

In this paper is we introduce the mass spring system with the Dirac Delta which is then solved 

using the Laplace transform. Numerical experiments are conducted to establish consistency with 

the existing theory on the mass spring system.  
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2 The mass spring system with Dirac delta function 

In this paper we consider the mass spring system problem with  the Dirac delta function 

given as 

 

where  is the mass [kg] and  is the external force [N] applied to the system at the 

instant time . The differential equation (1) for this problem is then given as  

 with  

where  is the acceleration [ ],  is the velocity [  and  is the displacement 

[m] of the mass from the equilibrium position at time  [sec]. The natural frequency of the 

system is 

 

where  is the spring constant [N/m]. In this problem we assume viscous damping.  

The characteristic equation (CE) for equation (4) is 

 

and has the roots 

 

Equation (7) shows that depending on the value of the damping factor , the CE has three types 

of roots, namely; either real distinct roots [ , real repeated roots  or complex roots 

and If  the real distinct roots are  

 

and in this case the system is said to be over-damped. When , the real repeated roots are 

 

and in this case the system is said to be critically damped. For , we have no real roots, but 

instead complex roots given by 

 

and in this case the system is said to be under-damped. In the case of no-damping , we 

also have complex rootsand are given by 
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and in this case the system is said to be un-damped [1,7]. Before we solve the differential 

equation (4) using the Laplace transform method, we first consider some important definitions 

and properties of the Laplace transform, the Dirac delta function and the inverse Laplace 

transform. 

Some important properties of the Dirac delta function considered include 

 

and hence 

 

 

3 Some properties of the Laplace Transform 

3.1Some Properties of the Laplace Transform 

Definition 1.If  is defined for , then the Laplace transform of  denoted by 

 or £  is given by  

£  =  

where  is in general a complex quantity with a positive real part [1, 7]. The Laplace transform 

has the following properties [1,7, 8] 

• Linearity Property 

   £ £ £  = £  + £  =  

for  and  any two constants. 

• Laplace Transform of Derivatives 

£  = £  

£  = £  

In general for any positive integer , we have 

£  =  

• Laplace Transform of the Dirac Delta Function 
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          £  

by property (12). Hence for , we have £  [8]. Similarly, by property (12) we 

have 

 £  = (  

3.2 Properties of the inverse Laplace transform 

Definition 2. If  is the Laplace transform of  then the inverse Laplace transform of 

is given by  and has the following properties [1, 7, 8] 

• Linearity Property 

  If the inverse Laplace transforms of two functions  and  exist, then for any two   

constants  and  we have 

 

• Shift or Translation Property 

   If £  then 

 

£  

and hence  

 

where  is the unit step function given by 

 

More explicitly 

 

 

4 Solving the system 

Applying the Laplace transform to both sides of the differential equation (4) and using properties 

(15), (17) and (20) together with the initial conditions we obtain the algebraic equation 
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where  is a constant given by . Free response refers to the homogeneous part or the 

case where no external force is applied to the system . Solving the algebraic equation 

(26) mainly depends on the nature of its denominator. That is, whether it is reducible or 

irreducible [6]. Equating the denominator of equation (26) to zero and replacing  by , yields the 

characteristic equation of the differential equation (4). Hence the nature of the roots of the 

characteristic equation (6) determines whether the denominator of the algebraic equation is 

reducible or irreducible. The denominator is reducible when the characteristic equation has real 

roots [over-damped and critically damped cases] and irreducible when the roots are complex 

[under-damped and un-damped cases] [6]. Next we solve the algebraic equation for the four 

cases in the following order; over-damped, critically damped under-damped and un-damped 

case. 

Case I  

In this casethe characteristic equation (6) has two real distinct roots 

 and . Thus the denominator of equation 

(26) is reducible and simplifies to 

 

The algebraic equation (26) becomes 

 

Solving for  using the method of partial fractions decomposition we obtain 

 

where  and  are constants given by   and   with 

 

where  and  are constants given by  and  . Taking the inverse 

Laplace transform of equation (29) and using the shift property (23) for the forced response part 

we obtain 

 

where  
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Here  is the homogeneous solution and  is the particular solution. The general solution 

is  

 

and can be expressed more explicitly as  

 

Case II  

In this case the characteristic equation (6) has real repeated roots  and the 

denominator of equation (26) is reducible and simplifies to 

 

where  Equation (26) becomes 

 

Solving for  we obtain 

 

where  and  arte constants given by  and  with 

 .       (38) 

Taking the inverse Laplace transform of equation (37) we obtain 

 

where  

 

More explicitly the general solution is given by  
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Case III  

In this case the characteristic equation (6) has no real roots, but complex roots instead. The 

denominator of equation (26) is irreducible and using the method of completing the square the 

denominator simplifies to 

 

where  

 

is the damped frequency of the system[1, 6]. Equation (26) then becomes 

 

Solving for  we obtain 

 

 

where  and  are constants given by  and  with 

 

Taking the inverse Laplace transform of (45) we obtain 

 

where  

 

More explicitly the general solution is given by  
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Case IV  

In this case there is no damping and the characteristic equation (6) has no real roots, but complex 

roots instead like for the under-damped case. The denominator of equation (26) is irreducible. 

However, it is already in its simplest form and equation (26) becomes 

 

Solving for  we obtain 

 (51) 

where  and  are constants given by  and  with 

 

Taking the inverse Laplace transform of equation (51) we obtain 

 

where 

 

More explicitly the general solution is 

 

5Numerical Experiments 

Suppose we have a mass spring system having a mass of  attached to a spring with a spring 

constant of . The mass is released from rest at  below the equilibrium position at the 

time  an external force with a total impulse of  is applied to the system. In this 

paper we determine the displacement  of the mass for the four cases: over-damped, critically 

damped, under-damped and un-damped. 

The parameter values for the system are: mass,  , spring constant,  , 

natural frequency, , time when impulse force is applied, , 

external force, , the constant,  and initial the conditions are 

, . The differential equation for the system (4) becomes 
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  with  

The graph of the external force  is given in Figure 1. The function is  at 

the instant time  seconds and zero elsewhere. 
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6 Results and Analysis 

 

Results in Figure 2 show that in both the over-damped [part (a)] and critically damped [part (b)] 

cases, the mass eventually returns to the equilibrium position. The application of the impulse 

force at time  seconds displaces the mass a few meters below the equilibrium position. 

The displacement of the mass in the critically damped case is more than that for the over-damped 

case. The mass returns to the equilibrium position faster for the critically damped case as 

compared to the over-damped case. 
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The results in Figure 3 show that for the under-damped case [part (c)], the mass oscillates and 

later returns to the equilibrium position. The application of the impulse force again displaces the 

mass below the equilibrium position as seen in Figure 2. In the un-damped case [part (d)], the 

mass oscillate continuously with the application of the impulse force leading to oscillations with 

a reduced amplitude as compared to the homogeneous solution. 

7 CONCLUSIONS 

In this paper, we have shown how the Laplace transform method easily solves the mass spring 

system. The nature of the roots of the characteristic equation of the differential equation leads to 

the four cases [over-damped, critically damped, under-damped and un-damped] and also plays a 

major role in solving the algebraic equation resulting after taking the Laplace transform of the 

differential equation. The application of the impulse force displaces the mass below the 

equilibrium and there are no oscillations for the over-damped and critically damped cases. On 

the other hand oscillations were obtained for the under-damped and un-damped case with 

continuous oscillations for the latter. Results obtained are consistent with the general theory of 

solving the mass spring system.   
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